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Upstream in° uence in boundary layers
45 years ago

By Sir James Lighthill

Department of Mathematics, University College London,
Gower Street, London WC1E 6BT, UK

My two-part paper `Boundary layers and upstream in®uence’, published in 1953, sur-
veyed a wide range of experimental evidence on how a disturbance in supersonic ®ow,
which in inviscid theory would a¬ect only downstream conditions, is able to exercise
an upstream in®uence through the agency of a boundary layer, either laminar or
turbulent. Then, by systematically comparing the data with existing attempts to
account for the phenomenon theoretically, it concluded that, essentially, two mech-
anisms of upstream in®uence exist.

Mechanism (i), ­ rst suggested by Oswatitsch & Wieghardt in 1941, depended on
a particular property of supersonic ®ow over a wall: that either wall curvature on
inviscid theory, or (for a ®at wall) curvature d2 ¯ 1=dx2 of the displacement-thickness
contour on boundary-layer theory, generates a proportional pressure gradient; which,
in the latter case, is A2d2 ¯ 1=dx2, A2 being a known positive function of Mach number.
Also, this positive pressure gradient might be expected to thicken the layer at a
spatial rate d ¯ 1=dx = A1(A2d2 ¯ 1=dx2), where A1, although far from precisely known,
must be less for a turbulent than for a laminar layer; so that, ­ nally, the e-folding
distance of upstream in®uence would be A1A2.

Mechanism (i) was compared, in part II of my paper, with a di¬erent proposal (see
the work of Howarth in 1948) for a theoretical programme concerned with `propaga-
tion up the subsonic layer’, in which only the undisturbed boundary-layer distribution
(including its subsonic part) would be taken, as in®uenced by viscosity, while distur-
bances to it would be treated inviscidly. The reason why attempts to carry out this
programme had failed was explained in terms of earlier theories of boundary-layer
instability, in which time-dependent disturbances had been found to be in®uenced by
viscosity in two layers: a wall layer and a critical layer. For disturbances independent
of time these would coincide into a single wall layer in which, however, the in®uence
of viscosity still needed to be taken into account; in which case, the analysis could be
satisfactorily completed but became in essence merely an expression of mechanism (i)
with a relatively precise determination of A1.

Mechanism (ii), identi­ ed in work by Lees in 1949 at Princeton and by Liepmann,
Roshko & Dhawan in 1949 at Caltech, depended on the upstream spreading of a sep-
aration bubble till it became su¯ ciently slender to cause no further separation ahead
of it. Part I of my paper was concerned to point out that, although mechanism (i)
can work only when a well-de­ ned coe¯ cient A2 exists (that is, for supersonic ®ow),
mechanism (ii) is e¬ective in both subsonic and supersonic ®ow. This was illustrated
by analysing data on ®ow up a step at various Mach numbers (with various loca-
tions for transition to turbulence) in terms of boundary-layer separation studies.
Those instructive examples, which may today be somewhat less known, and which
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included several interesting cases of both steady and also unsteady separated ®ows,
can appropriately be recalled in a colloquium devoted to such phenomena.

Keywords: boundary layers; upstream in° uence; separated ° ows;
supersonic ° ow; subsonic ° ow

1. Introduction

For this European Mechanics Colloquium held in Manchester University, I was
invited to look back 45 years to 1953, when my paper `Boundary layers and upstream
in®uence’ appeared (Lighthill 1953a; b) in two parts, describing studies which I had
pursued in Manchester’s Mathematics Department from October 1949 to October
1952 (the paper’s date of submission), and relating them both to other theoretical
studies and also to extensive wind-tunnel work carried out during the same period
in various centres, including the ­ ne Fluid Motion Laboratory created at Manch-
ester by S. Goldstein and directed by W. A. Mair. After Goldstein resigned from the
Beyer Chair of Applied Mathematics in order to move from Manchester to Haifa,
I applied for that chair; and I remember speaking colourfully, during my interview
(April 1950), about much of the research in which I was then active. In particular,
I remember describing the upstream-in®uence phenomena that I was studying as
`an intriguing departure from St Venant’s Principle’ (the principle that, in general,
detailed in®uences of a local disturbance on a thin plate or in a thin layer do not
penetrate over a distance of many thicknesses).

(a) A golden age (1949{1952) of upstream-in° uence research

After taking up the chair I arranged a lecture tour (April 1951) around some 12
major US centres of aerodynamic research, all active in areas in which I was inter-
ested. For the areas of `boundary layers and upstream-in®uence’ in particular, I came
to know personally during that tour the authors of key experimental and theoret-
ical studies pursued at Caltech (Liepmann et al . 1949), MIT (Barry et al . 1950),
Princeton (Lees 1949; Bogdono¬ & Solarski 1951; Lees & Crocco 1952) and Cornell
(Kuo 1951) just as I had long known the experimenters at Manchester (Bardsley &
Mair 1951; Mair 1952; Johannesen 1952) and NPL (Holder & North 1950; Gadd &
Holder 1952) and the Bristol theoreticians (Howarth 1948; Stewartson 1951). Dur-
ing this golden age (1949{1952) of upstream-in®uence research, a close-knit Anglo-
American community|in®uenced also by papers from Rome (Ferri 1939), G�ottingen
(Oswatitsch & Wieghardt 1941) and Z�urich (Ackeret et al . 1946)|felt committed
to making sense of all the experimental evidence that disturbances to a supersonic
®ow can have a substantial upstream in®uence, through the agency of a boundary
layer, even though in inviscid theory a disturbance that leaves the ®ow supersonic
can have no such in®uence.

An early advance by Liepmann et al . (1949) emphasized distinctions between how
a laminar and a turbulent layer respond to an incident shock wave, and illustrated
them by sketches (­ gure 1) of `typical’ re®ection patterns, with separation absent for
the turbulent pattern yet dominating the laminar pattern. However, an admirably
systematic study (Barry et al . 1950) went beyond the concept of `typical’ patterns
and displayed the interaction with boundary layers on a ®at surface, at more than one
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turbulent boundary layer laminar boundary layer

Figure 1. Re° ection patterns.

Reynolds number, of a sequence of di¬erent shock waves generated by sharp-edged
plates at a range of angles (1¯, 2¯, 3¯, 4¯, 5¯ and 6¯) to an oncoming supersonic
stream. Upstream in®uence through a laminar layer was always substantial, yet, for
the relatively weaker shocks, did not involve separation. They tellingly concluded:
`further theoretical work is necessary. The results presented here may serve as a
guide to such work.’ Bardsley & Mair (1951), on the other hand, studied details of
separation-free re®ection of moderately strong shock waves from turbulent layers, in
experiments suggested by, and tending to con­ rm, my own theoretical predictions
(see x 2 d); yet they also showed that rather strong shock waves do cause even a
turbulent layer to separate. Figure 1 is an oversimpli­ cation, then, although a major
quantitative distinction remains between the tendency of incident shock waves to
cause separation of laminar and turbulent layers.

(b) My 1953 argument about two distinct mechanisms of upstream in° uence

My comprehensive papers (Lighthill 1953a; b) were concerned with boundary layers
and upstream in®uence in general, including the upstream e¬ects of any ®ow de®ec-
tion generated by a corner (concave or convex) in a wall as well as the upstream
e¬ects of a shock wave incident upon a ®at wall. From my analysis of the experi-
mental and theoretical papers mentioned above and from my own further theoretical
work I concluded that two separate mechanisms exist for upstream in®uence via a
boundary layer.

I also enquired whether they were special to supersonic ®ow, but received a di¬erent
answer in each case. Mechanism (i)|originally outlined by Oswatitsch & Wieghardt
(1941) and given more precision in Lighthill (1953b)|does arise (see x 2 below) from
a special property of supersonic ®ow, and, moreover, fails in subsonic ®ow.

Mechanism (ii) depends, however (Liepmann et al . 1949; Lees 1949; Gadd & Holder
1952), on upstream spreading of a separated-®ow region until it is so slender as to
cause no further separation ahead of it (see x 3 below). By comparing comprehensive
experiments (Mair 1952) on such spreading in supersonic ®ow with some analogous
subsonic data, I demonstrated very broad similarities along with some interesting
minor di¬erences in Lighthill (1953a). This comparison is sketched in x 3 a below;
after which, in x 3 b, I o¬er a fuller account of the remarkable discovery by Mair
(1952), during his experiments on upstream spreading of separation carried out in
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3050 Sir James Lighthill

the supersonic tunnel of Manchester’s Fluid Motion Laboratory, of a wide range of
unexpected `steady and unsteady separated ®ows’, which are especially appropriate
to be described (along with an analysis of sources of unsteadiness) at a discussion
meeting with this title.

2. Mechanism (i), exclusive to supersonic ° ow without separation

We have seen (x 1 a) that when a weak shock is incident upon a laminar layer, or
a moderately strong shock is incident on a turbulent layer, separation is avoided.
It is also absent where a convex corner de®ects a supersonic ®ow, so as to produce
an expansion wave outside the boundary layer. The interaction of weak compressive
or expansive disturbances with a laminar or turbulent layer, in such cases without
separation, is discussed in x 2, with special (although not exclusive) emphasis on how
upstream in®uence may arise.

(a) The Oswatitsch & Wieghardt (1941) mechanism (i) and
its relation to the Howarth (1948) approach

Mechanism (i) for upstream in®uence (Oswatitsch & Wieghardt 1941) depends, as
mentioned in x 1 b above, on a special characteristic of ®ow at Mach number M1 > 1.
This is that its de®ection by a small angle ² yields a pressure change in direct
proportion to ² .

Speci­ cally, the non-dimensional pressure excess,

P =
p ¡ p1

® p1
(2.1)

(where p1 is undisturbed pressure and ® the adiabatic index), becomes

P = A2 ² ; where A2 =
M 2

1

(M 2
1 ¡ 1)1=2

: (2.2)

It follows that wall curvature d ² =dx (taken positive for curvature concave to the
stream) generates a pressure gradient dP=dx = A2d ² =dx.

Similarly, on a ®at wall, any curvature d2 ¯ 1=dx2 of a boundary layer’s displacement
thickness contour must give a pressure gradient

dP

dx
= A2

d2 ¯ 1

dx2
: (2.3)

Yet this gradient, in turn, may be expected to thicken the layer, at a spatial rate

d ¯ 1

dx
= A1 A2

d2 ¯ 1

dx2
; (2.4)

where the coe¯ cient A1 (rate of thickening per unit gradient of non-dimensional pres-
sure excess), though far from precisely known, is substantially greater for a laminar
than for a turbulent layer. Evidently, equation (2.4), with its solutions proportional
to exp(x=A1A2), suggests for upstream in®uence an e-folding distance

A1A2: (2.5)
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Upstream in° uence in boundary layers 45 years ago 3051

An alternative proposal for interpreting upstream in®uence had been put forward
by Howarth (1948). It was based on the idea that upstream in®uence, prohibited in
supersonic ®ow, may become possible via a boundary layer’s subsonic portion. The
idea of `propagation up the subsonic layer’ suggested a theoretical approach in which
viscosity would be regarded as a¬ecting only the undisturbed distribution of velocity
in the boundary layer (including its subsonic portion) but not the disturbances to
it. Yet detailed attempts to pursue this approach had run into very serious di¯ cul-
ties in the immediate neighbourhood of the wall. Moreover, after these di¯ culties
were ­ nally resolved, in Lighthill (1953b), the Howarth mechanism was found (see
below) to become identical with the Oswatitsch & Wieghardt (1941) mechanism (i),
although with A1 now relatively precisely determined.

(b) Resolving di± culties in the Howarth (1948) approach

The essential hint on how to resolve those di¯ culties emerged from boundary-layer
stability theory, already well established by Tollmien (1929) and Schlichting (1933).
According to that theory, small disturbances,

[u(y); v(y); 0]eik(x¡ct); (2.6)

to a parallel ®ow [U(y); 0; 0] satisfy, at low Mach number, the well-known Orr{
Sommerfeld equation:

[U (y) ¡ c](v00 ¡ k2v) ¡ U 00(y)v = ( ¸ =ik)(v0000 ¡ 2k2v00 + k4v); (2.7)

where the right-hand side, proportional to kinematic viscosity ¸ , is known to be
signi­ cant only

(a) in a wall layer around where U (y) = 0, and

(b) in a critical layer around where U(y) = c.

But, if disturbances independent of t are to be represented by equation (2.6), c is
necessarily zero, in which case layers (a) and (b) merge into a single inner viscous
layer. Also, if the undisturbed ®ow has zero pressure gradient, U 00(0) = 0; accordingly,
in that thin inner viscous layer, U (y) can be approximated by U 0(0)y and ¸ by its
wall value ¸ w, and equation (2.7) can be written

y(v00 ¡ k2v) = L3(v0000 ¡ 2k2v00 + k4v); (2.8)

with

L =
¸ w

ikU 0(0)

1=3

: (2.9)

Equation (2.8) possesses a very simple solution, as follows, for small values of k
(and we shall see that this solution has good accuracy when jkLj < 1, a condition
on wavenumber which excludes only features on the very ­ nest scale). Then

yv00 = L3v0000; with its solution v00 = A Ai
y

L
(2.10)
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Figure 2. The Airy function.

in terms of the Airy function Ai(z) plotted in ­ gure 2. Thus, the disturbed viscous
stress, proportional to v00, decays exponentially with distance from the wall, and is
essentially negligible for y > 2L. Integrating twice, we obtain

v = A
y

0

(y ¡ y1) Ai
y1

L
dy1; (2.11)

where the upper limit of integration can be replaced by 1 in the essentially inviscid
region where v00 has become negligible, giving

v = A yL
1

0

Ai(z) dz ¡ L2
1

0

z Ai(z) dz : (2.12)

Thus, the disturbance velocity v, in the region where it is governed by inviscid
equations, behaves as if the location where it has to vanish is not the wall, y = 0,
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Table 1. Location of zero v

kL 0 §0:5 §1:0 §1:5 §2:0

(y=L)v = 0 0:78 0:75 0:70 0:64 0:58

but is given by

y

L
=

1

0

z Ai(z) dz

1

0

Ai(z) dz

= 0:78; (2.13)

namely the centroid of the area depicted in ­ gure 2. This modi­ ed boundary condi-
tion on solutions to the inviscid equations is found (see below) to be of the greatest
importance.

Lighthill (1953a; b) also computed exact solutions of the full equation (2.8), deter-
mined their exact behaviour for large y=L, and extrapolated that behaviour back
to where v vanishes, giving the results in table 1. As indicated earlier, these results
suggest that condition (2.13) may be used with con­ dence whenever jkLj < 1.

(c) Perturbations by incident wave and/or wall de° ection

This conclusion, that equation (2.13) speci­ es the point where an ordinary inviscid
boundary condition has to be satis­ ed by any solution of equations for inviscid distur-
bances to a boundary layer, is precisely what is required to remove singularities from
those equations. Actually, steady inviscid disturbances to a Mach number distribu-
tion [M (y); 0; 0] satisfy in terms of ² , the ®ow de®ection, and P , the non-dimensional
pressure excess (2.1), a pair of equations

@²

@x
= ¡ M ¡2(y)

@P

@y
;

@²

@y
= [M ¡2(y) ¡ 1]

@P

@x
; (2.14)

whose singularity in any interval in which M (y) becomes zero is removed if the
boundary condition at the wall is replaced by one at the location (2.13) where M (y)
takes the value

M2 = 0:78LM 0(0): (2.15)

Equations (2.14) then simply have to be satis­ ed in a layer in which M (y) varies
between M2 and the freestream value M1.

A physical interpretation of equations (2.14) is that the ­ rst relates streamline
curvature to the centrifugal action of cross-stream pressure gradient, while the second
speci­ es how streamtube-area expansion responds to streamwise pressure gradient
(in a manner which changes sign where M (y) = 1, as is familiar from the theory of
the convergent{divergent nozzle). It is of course precisely this thickening in response
to a gradient @P=@x that the coe¯ cient A1 of x 2 a is supposed to represent, and
the coe¯ cient in square brackets integrated across the boundary layer (that is, from
M (y) = M2 to M (y) = M1) will emerge (see below) as a ­ rst approximation to A1.

After ² is eliminated from equations (2.14), while P is expressed as an integral

P =
1

¡ 1
eikx ¦ (k; y) dk; (2.16)
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the Fourier transform ¦ is found to satisfy the ordinary di¬erential equation

d

dy
M ¡2(y)

d ¦

dy
= k2[M ¡2(y) ¡ 1]¦ ; (2.17)

together with boundary conditions as follows. Whenever wall de®ection, with a dis-
tribution

² =
1

¡ 1
eikxH(k) dk; (2.18)

is responsible for generating some or all of the disturbance, then the ­ rst of equa-
tions (2.14) gives the wall boundary condition as

¦ y(k; 0) = ¡ M 2
2 ikH(k); (2.19)

because M (y) takes the value M2, given by equation (2.15), at the location (here
rede­ ned as y = 0) where the inviscid boundary condition has to be satis­ ed. Also,
at the edge y = ¯ of the boundary layer, disturbances take the simple form of small
perturbations to a uniform stream of Mach number M1 > 1; thus,

P = f(x + ­ y) + g(x ¡ ­ y); where ­ = (M 2
1 ¡ 1)1=2: (2.20)

If, here, the functions f (incident wave) and g (emitted wave) have Fourier transforms
F (k) and G(k), then

P =
1

¡ 1
eikx[F (k)eik­ y + G(k)e¡ik­ y ] dk; (2.21)

so that its Fourier transform ¦ (k; y) takes, where y = ¯ , the square-bracketed form
given here in terms of a known incident wave and the unknown emitted wave. Elim-
ination of the latter then gives a boundary condition

¦ y(k; ¯ ) + ik­ ¦ (k; ¯ ) = 2ik­ eik­ ¯ F (k): (2.22)

Now, any solution of the second-order equation (2.17) can be expressed as a linear
combination of two independent solutions, Q(k; y) and T (k; y), satisfying, at y = 0,
the conditions

Q(k; 0) = 1 and Qy(k; 0) = 0; T (k; 0) = 0 and Ty(k; 0) = 1: (2.23)

In particular, the solution which satis­ es the boundary conditions (2.19) and (2.22)
can be written as

¦ = 2ik­ eik­ ¯ F (k)
Q(k; y)

Qy(k; ¯ ) + ik­ Q(k; ¯ )

¡ M 2
2 ikH(k) T (k; y) ¡ Ty(k; ¯ ) + ik­ T (k; ¯ )

Qy(k; ¯ ) + ik­ Q(k; ¯ )
Q(k; y) ; (2.24)

where the ­ rst line represents the e¬ect of an incident wave on a ®at wall (it satis­ es
(2.19) with H(k) = 0), and the second line represents the e¬ect of wall de®ection
without any incident wave (it satis­ es (2.22) with F (k) = 0); indeed, only in the
simultaneous presence of an incident wave and wall de®ection would ¦ (k; y) take
the two-line form (2.24).
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For completeness we may also note an expression

G(k) =
¡ e2ik­ ¯ [Qy(k; ¯ ) ¡ ik­ Q(k; ¯ )]F (k) + M 2

1 ikeik­ ¯ H(k)

Qy(k; ¯ ) + ik­ Q(k; ¯ )
(2.25)

for the Fourier transform of the emitted wave; which, of course, can be viewed as a
re®ection of any incident wave and/or as an emission produced by any wall de®ection.
Results (2.24) and (2.25) are used in x 2 d to make the e-folding distance of upstream
in®uence via a boundary layer relatively precise, and (more brie®y) to discuss some
­ ne-scale features of the emitted wave and of the wall pressure distribution.

(d ) A relatively precise form of mechanism (i) for upstream in° uence

A key to upstream in®uence is the presence of a common denominator throughout
expressions (2.24) and (2.25), which have singularities of `simple-pole’ type wherever
that denominator vanishes. As x ! ¡ 1, the asymptotic behaviour of the Fourier
integral (2.16) for P is found by moving the path of integration downwards in the
complex k-plane until it crosses the ­ rst such pole. If then µ1 is the least positive
number such that the denominator vanishes for k = ¡ iµ1, giving

Qy( ¡ iµ1; ¯ ) + µ1­ Q( ¡ iµ1; ¯ ) = 0; (2.26)

all disturbances vary asymptotically

like eµ 1x; as x ! ¡ 1: (2.27)

In many problems of mechanics of thin plates and thin layers, a similar asymptotic
behaviour (2.27) is found, with µ1 as the least eigenvalue satisfying a condition
analogous to (2.26). St Venant’s Principle (see x 1 above) states that, `in general’,
the e-folding distance, µ¡1

1 , for decay of disturbances will hardly exceed the layer
thickness; thus, the `intriguing departure’ from it to which I referred in my chair
interview lies in an unusual smallness of the eigenvalue µ1, which in turn arises
because the singularity of equations (2.14) is approached closely at M (y) = M2, the
e¬ective wall Mach number (2.15), where for k = ¡ iµ1, the expression (2.9) for L
becomes

L =
¸ w

µ1U 0(0)

1=3

: (2.28)

Accordingly, although large-k solutions are used later to discuss ­ ne-scale features,
a relatively precise determination of upstream in®uence comes from small-k solutions.
For k = 0, equation (2.17) under boundary condition (2.23) has the solution Q = 1,
whose substitution on the right-hand side of (2.17) gives, for small k, the approximate
solutions

Qy = k2M 2(y)
y

0

[M ¡2(z) ¡ 1] dz; Q = 1 + k2
y

0

M 2(y) dy
y

0

[M ¡2(z) ¡ 1] dz:

(2.29)

To this approximation, equation (2.26) for µ1 becomes

¡ µ2
1M 2

1

¯

0

[M ¡2(z) ¡ 1] dz + µ1­ 1 ¡ µ2
1

¯

0

M 2(y) dy
y

0

[M ¡2(z) ¡ 1] dz = 0;

(2.30)
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where the smallness of M2, the value of M (z) at the lower limit of the ­ rst integral,
leads directly to the smallness of µ1.

Actually, equation (2.30) includes terms in µ1, µ2
1 and µ3

1, and omission of the last
of these gives, to ­ rst order,

¯

0

[M ¡2(z) ¡ 1] dz =
­

µ1M 2
1

: (2.31)

It may, however, be worthwhile to also study the last term (in µ3
1), because its inner

integral,

y

0

[M ¡2(z) ¡ 1] dz; (2.32)

has the same lower limit (where M (0) takes the small value M2) as integral (2.31); so
that the two integrals may be approximately equal except where y is small compared
with ¯ , when, on the other hand, the value of (2.32) is unimportant, because, in
equation (2.30), it is multiplied by the small factor M 2(y). Equating the integrals
(2.31) and (2.32) in condition (2.30) turns it into a useful second-order expression
for the e-folding distance

µ¡1
1 =

M 2
1

­

¯

0

[M ¡2(y) ¡ 1] dy +
­

M 2
1

¯

0

M 2(y) dy; (2.33)

which is `robust’ in its indi¬erence to how the edge, y = ¯ , of the boundary layer is
de­ ned (a change to ¯ + " alters the second term by +­ " and the ­ rst by ¡ ­ ").

The ­ rst term on the right-hand side of (2.33) takes the Oswatitsch & Wieghardt
(1941) form A1A2 for the e-folding factor, with A2 speci­ ed by equation (2.2) and A1

as an integral of the square-bracketed coe¯ cient that, in (2.14), relates streamtube-
area expansion to the gradient @P=@x. That ­ rst term is, however, given greater
precision by addition of the (smaller) second term associated with centrifugal-force
e¬ects.

Equation (2.33) has to be solved for µ1, taking into account the dependence on
µ1 of expressions (2.28) for L and (2.15) for M2. Here, I show this only for one
case treated by Lighthill (1953a; b), using data for a zero-pressure-gradient laminar
layer with its `thickness’ ¯ de­ ned as distance from the wall, where the supersonic
mainstream velocity is attained to within 5%. Then (µ1 ¯ )¡1, the ratio of e-folding
distance to layer thickness, satis­ es, to second order, the condition

(µ1 ¯ )¡1 = (µ1 ¯ )1=3 1:3

­

Tw

T1
Re1=6 ¡ M 2

1 + 2

2­

Tw

T1

0:7

; (2.34)

where Re is Reynolds number based on distance from the leading edge, and an
appearance of the ratio Tw=T1 of wall temperature to freestream temperature can
be interpreted as due to any e¬ect of pressure gradient on layer thickening being
enhanced near a hot wall. For air in the zero-heat-transfer case, Tw=T1 is about
1+0:17M 2, when solutions of the algebraic equation (2.34) for (µ1 ¯ )¡1 are as plotted
in ­ gure 3 for values 105 and 106 of Re. At least when 1 < M < 2, the e-folding
distance for upstream in®uence is seen to be of the order of ­ ve layer thicknesses.
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Figure 3. Solutions of (2.34) (solid curves), for Re = 105 , 106 , and of (2.35) (dashed curve).

On the other hand, the simple ­ rst-order solution

(µ1 ¯ )¡1 =
1:3

­

Tw

T1

3=4

Re1=8; (2.35)

obtained from (2.34) by neglecting its last term, is seen in ­ gure 3 to give rather
poor accuracy, even at the highest value of Re (around 106) for which the boundary
layer is laminar. This casts some doubt on the practical wisdom of later approaches
based on treating Re1=8 as a large number!

Instead of using such an approach, Lighthill (1953a; b) was content with an a
posteriori check on the assumptions he had made. When the calculation had been
completed, the value obtained for µ1 was used in equations (2.28) and (2.15) to
compute M2, whose continued smallness (less than or equal to 0.3) con­ rmed the
correctness of treating the inner viscous layer as thin and of using a low-Mach-number
equation (2.7) within it.
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The small-k solutions of (2.17) have dominated this discussion on upstream in®u-
ence, which, without separation, is seen to be absent for turbulent layers yet sub-
stantial for laminar layers, especially at moderate M1 > 1. Very brie®y, however, the
large-k (WKB{Langer) solutions show that

(a) an incident wave

f(x + ­ y) =
1

¡ 1
eikxF (k)eik­ y dk

yields a re®ection,

g(x ¡ ­ y) =
1

¡ 1
eikxG(k)e¡ ik­ y dk;

with large-k behaviour G(k) ¹ e2ik³ (i sgn k)F (k), where

³ = ­ ¯ ¡
¯

y1

[M 2(y) ¡ 1]1=2 dy

is a phase shift due to cusped re®ection at the sonic line y = y1, and where, in
addition, the (i sgn k) factor causes a pressure `step’ in the incident wave to be
re®ected locally as a `ridge’ (for a laminar or turbulent layer);

(b) nonetheless, the wall pressure rises monotonically; while

(c) at a convex corner (with no incident wave) an expansion wave with monotonic
pressure drop is emitted, and, also, the wall pressure falls monotonically;

all of this being smoothed over a distance

¼ =
y1

0

[1 ¡ M 2(y)]1=2 dy:

3. Mechanism (ii): on upstream spreading of separation

(a) Comparison

Now I move forward to mechanism (ii): upstream spreading of a separated-®ow
region. Unlike mechanism (i), this can work even in subsonic ®ow, where, admit-
tedly, discontinuous incident waves are impossible, and yet wall de®ection can be
discontinuous (and have an upstream in®uence). I discovered, in plate 19(b) of Gold-
stein (1938), a photograph (unpublished elsewhere) by W. S. Farren of low-speed
®ow up a step, in which a separated-®ow region has spread upstream to become so
slender that boundary-layer separation is just initiated at its leading cusp. Here, the
external ®ow can be determined as a simple free streamline problem.

The upper half of this symmetrical ®ow up a step is derived using the complex
coordinate z = x + iy and potential w = ¿ + iÁ, where

« = ln
dw

dz
= ln q ¡ i ² ;

with ®ow speed q and direction ² , ­ lls this domain. With

k =
º =2

ln(u=v)
;
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and S as the length of the streamline BC, the conformal mapping is

w = V S tanh2 k ² + i ln
q

v
:

So the streamline BC has the `intrinsic’ equation

s = S tanh2(k² );

and the centreline velocity q satis­ es

x = ¡ S
ln (q=v)

0

e¡t dftan2(kt)g:

The experiment corresponds to k = 4:6, with boundary-layer separation after a
mainstream-velocity fall by 9% (cf. 12% (Howarth 1938) for linear retardation), giv-
ing b=h = 4:6, `=h = 5:7 and laminar separation at

Cp =
p ¡ p1

1
2
» U2

= 0:17:

(The main di¬erences in supersonic ®ow are that shock-initiated separation gives a
straight free streamline, and it occurs at a lower Cp (º 0:08 at Re = 105, and less at
higher Re).)

(b) On Mair’s experiments

Here I leave my own old paper and devote the rest of my current paper to W. A.
Mair’s marvellously complex 1952 experiments involving both steady and unsteady
separated ®ows. Mair noted the following.

If a blunt body of revolution is ­ tted with a slender probe at the nose
and placed in a supersonic airstream, there is an interaction between the
shock wave in front of the body and the boundary layer on the probe.

Further,

Schlieren photographs were also taken of the corresponding two-dimen-
sional ®ow, using a thin plate clamped between two thicker ®at-nosed
plates.

Mair’s (1952) principal work was on axisymmetric blunt-nosed bodies in supersonic
®ow (M = 1:96), where a thin probe converts a high-drag detached-shock regime
(his ­ g. 4) into a regime (his ­ g. 7) with conical shock and much lower drag (an
ultra-lightweight `fairing’). The steady conical-shock regime was achieved for probe
lengths 1:3d to 2:1d (®at nose), and 0:3d to 1:65d (hemispherical), where d is the
body diameter. In addition, two types of unsteady separated ®ow were observed:

(I) irregular ° uctuation; whenever the probe length exceeded 2:1d (®at nose) or
1:65d (hemispherical), the separation point was downstream of the probe shoul-
der (see below) and varied in a highly intermittent fashion; and

(II) a regular oscillation (at ca. 6 kHz) was observed (for the ®at nose only) with
probe lengths from 0:7d to 1:3d.
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Concerning (I), the irregular ®uctuation with long probes, the intermittent vari-
ation of the separation point extends over a wide spectrum. Thus, ®uctuation com-
ponents of ca. 10 Hz were directly visible (on a screen), yet other components were
in kHz.

Mair’s (1952) ­ g. 5 shows ®ash photographs (instantaneous patterns) with separa-
tion `presumably’ laminar in (a) and (c), turbulent in (b) and (d), due to a variably
disturbed mainstream; a much lower pressure jump being needed to separate a lam-
inar layer. As con­ rmation, ®ows (e) and (f), with transition ­ xed (by a thin wire
ring), are steady.

Rapid upstream movement of the separation point (at approximately 0:4 times the
speed of sound) was shown in (a) and (c) by the angle to the axis of the conical shock
wave (ca. 25¯ as against 30.7¯ Mach angle). Similarly, in Mair’s ­ g. 6, for probes not
quite so long, (a), (b) and (c) show upstream movement, but (d) downstream! (The
shock angle exceeds the value for steady conical ®ow.)

Mair also found (II) regular oscillation at ca. 6 kHz on a ®at-nosed body with
probe lengths from 0:7d to 1:3d; and identi­ ed its nature by ­ rst taking numerous
®ash photographs and then sequencing a selection: his ­ g. 12(a) with two bow waves
(upstream wave moving aft, to yield in (b) a single `split’ bow wave), while sepa-
ration moves upstream; (b) 50 m s later, with separation at the probe nose giving a
large dead-air region and incipient strong shock; (c) 30 m s later, with larger dead-air
region, with probe bow shock extended and with annular body bow wave; (d) 20 m s
later, with annular wave moving aft (the origin of the emission of weak downstream-
moving shocks); (e) 40 m s later, and (f) 20 m s later still, both with the dead-air region
contracting, and its shock moving aft, while a new body bow wave appears, to give
(a) soon after! Finally, some corresponding two-dimensional ®ows: his ­ g. 15(a) thick
plate, no thin plate; (b), (c) thin plates of length 0:55d (same bow wave) and 2:5d
(steady wedge-shaped dead-air region); (d), (e), (f) with intermediate lengths 1:5d
and 2:0d showing unsteady ®ows, which need not be symmetrical!

4. Conclusion

Forty-­ ve years ago, boundary layers and upstream in®uence were alive and well and
living in Manchester (inter alia)!

5. Comment

Sir James completed, by hand, the abstract, x 1 and most of x 2 before his death. The
remainder of the paper was taken (by Beryl Lankester and Frank Smith) from the
handwritten transparencies of Sir James’s talk (see Preface, this issue), as faithfully
as possible, consistent with clarity.
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